On L2 –eigenfunctions of Twisted Laplacian on Curved Surfaces and Suggested Orthogonal Polynomials

نویسنده

  • A. GHANMI
چکیده

We show in a unified manner that the factorization method describes completely the L2 -eigenspaces associated to the discrete part of the spectrum of the twisted Laplacian on constant curvature Riemann surfaces. Subclasses of two variable orthogonal polynomials are then derived and arise by successive derivations of elementary complex valued functions depending on the geometry of the surface. Mathematics subject classification (2010): 58C40, 33C45.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

Eigenfunctions of the Laplacian on Rotationally Symmetric Manifolds

Eigenfunctions of the Laplacian on a negatively curved, rotationally symmetric manifold M = (Rn, ds2), ds2 = dr2+f(r)2dθ2, are constructed explicitly under the assumption that an integral of f(r) converges. This integral is the same one which gives the existence of nonconstant harmonic functions on M.

متن کامل

Coordinate finite type invariant surfaces in Sol spaces

In the present paper, we study surfaces invariant under the 1-parameter subgroup in Sol space $rm Sol_3$. Also, we characterize the surfaces in $rm Sol_3$ whose coordinate functions of an immersion of the surface are eigenfunctions of the Laplacian $Delta$ of the surface.

متن کامل

Small Scale Equidistribution of Eigenfunctions on the Torus

We study the small scale distribution of the L2 mass of eigenfunctions of the Laplacian on the flat torus Td . Given an orthonormal basis of eigenfunctions, we show the existence of a density one subsequencewhose L2 mass equidistributes at small scales. In dimension two our result holds all the way down to the Planck scale. For dimensions d = 3, 4 we can restrict to individual eigenspaces and s...

متن کامل

BASIS PROPERTIES OF EIGENFUNCTIONS OF THE p-LAPLACIAN

For p 12 11 , the eigenfunctions of the non-linear eigenvalue problem for the p-Laplacian on the interval (0, 1) are shown to form a Riesz basis of L2(0, 1) and a Schauder basis of Lq(0, 1) whenever 1 < q < ∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010